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Abstract We investigate dynamic adaptation policies for rate adaptive multime-
dia streams in a network where each route traverses at most one bottle-
neck link. Dynamic adaptation allows clients to dynamically adapt the
stream subscription level, i.e., time-average stream rate, in response to
changes in available link capacity, and allows the system to maintain a
lower blocking probability than is possible with non-adaptive streams.
We define the quality of service for rate adaptive streams using the met-
rics of time-average subscription level, rate of adaptation, i.e., change in
subscription level, and blocking probability. We investigate two baseline
policies, namely, fair share adaptation and two rate randomized adapta-
tion, and show that each suffers from significant implementation draw-
backs. We then show that the adaptation policy which maximizes the
mean subscription level overcomes these drawbacks, although streams
with a duration near a critical threshold may experience unacceptably
high rates of adaptation. This motivates the investigation of admission
policies for rate adaptive streams where a stream is given a static sub-
scription level at the time of admission which it maintains throughout
its lifetime. We identify the asymptotically optimal admission policy for
rate adaptive streams and show that it achieves an expected subscrip-
tion level equal to that under the optimal dynamic adaptation policy.
We also show that it maintains the asymptotic zero blocking property
achievable using dynamic rate adaptation but does not incur the im-
plementation overhead and QoS drawbacks of dynamic rate adaptation.
The conclusion is that near optimal QoS can be obtained using a simple
admission policy which gives the maximum subscription level to short
duration streams and the minimum subscription level to long duration
streams.
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1. Introduction
Streaming connections allow clients to play multimedia content in

real time as it is transferred over the network, and therefore streams re-
quire strict service guarantees, e.g., bandwidth, delay and loss, to guar-
antee satisfactory client perceived performance. Rich multimedia con-
tent may consume large amounts of network resources relative to other
applications—resources that may well be available on certain routes at
certain times. During congestion, however, these streams lack the ability
to adjust their resource consumption in response to heavier traffic. This
results in heavy loss, if service is not guaranteed, or unfairness, if service
is guaranteed and non-preemptive. Multimedia data, however, is adap-
tive in the sense that satisfactory playback may be obtained over a large
range of compression levels. This fact has motivated the investigation
of rate adaptive multimedia streams which offer the client the ability
to dynamically change the compression/resolution of the stream dur-
ing playback in response to network congestion. The canonical service
model for rate adaptive streams is hierarchical encoding, e.g., McCanne,
1996; Vishwanath and Chou, 1994, where multimedia content is simul-
taneously encoded into a set of subscription levels offering a range of
stream resolutions with a commensurate range of required bandwidth.
Clients may subscribe to as many subscription levels as their available
bandwidth permits and may adapt their resolution by adding or drop-
ping levels in response to changing network congestion.

Multimedia
Servers

Network

Bottleneck

Stream
Clients

Figure 1. A network consisting of multimedia servers providing streaming content
to clients, where stream routes traverse at most one bottleneck link.

The setup for the paper is shown in Figure 1 which depicts a net-
work with stream content being transmitted from multimedia servers to
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clients. We assume all active streams travel routes comprising at most
one bottleneck link. The restriction to a single bottleneck link is re-
quired for purposes of obtaining closed form expressions for the mean
subscription level and rate of adaptation. The policies themselves, how-
ever, are similar for general networks, see Weber and de Veciana, 2002.
We assume a network protocol, e.g., DiffServ or IntServ, that guarantees
a fixed amount of bandwidth is available for these streams, i.e., streams
will not incur any loss.

In this paper, extending previous work in Weber and de Veciana,
2002, we investigate the critical issue of adaptation policies, i.e., when
should streams adjust their subscription level, which streams should ad-
just, to which subscription level should they adjust, etc. Our approach
is unique in that we provide a system level, as opposed to a client level,
analysis of various adaptation policies in a dynamic network, i.e., where
streams come and go. We investigate three aspects of quality of service
associated with rate adaptive streams: the mean subscription level, the
rate of adaptation, and the blocking probability. We identify three dy-
namic adaptation policies: fair share adaptation, two rate randomized
adaptation, and an optimal adaptation policy that maximizes the time
average subscription level. Although the optimal dynamic adaptation
policy maximizes the mean subscription level, investigation of the rate
of adaptation as a function of stream duration identifies that streams
with a duration within a critical interval will experience an unacceptably
high rate of adaptation. The threshold nature of the optimal dynamic
adaptation policy suggests that a near optimal mean subscription level
may be obtained by a duration dependent admission policy that does
not dynamically adapt streams, thereby reducing the rate of adaptation
to zero. That is, instead of using a single class admission policy and
setting subscription levels using a given dynamic adaptation policy, we
use a multi-class admission policy that sets static subscription levels for
streams at the time of admission based on stream durations, which are
assumed to be known a priori, and then we do not make use of dynamic
adaptation. The price paid for reducing the rate of adaptation to zero is
a higher blocking probability because streams may no longer adapt their
subscription level to make room for new streams, but it is shown that
this increase in blocking probability is negligibly small for large capac-
ity links. The conclusion is that duration dependent admission policies
obtain near optimal mean subscription levels, zero rate of adaptation,
marginally higher blocking probabilities, all without the protocol and
complexity overhead of dynamic rate adaptation.

Relevant work includes Saparilla and Ross, 2000; Argiriou and Geor-
giadis, 2002; Rejaie et al., 1999; Gorinsky and Vin, 2001; Gorinsky et al.,
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2000; Kar et al., 2000; B.Vickers et al., 2000. The work in Saparilla and
Ross, 2000 investigates optimal policies to dynamically adapt the frac-
tion of the available bandwidth given to a base and enhancement layer.
Their work differs from ours in that it takes is a client-centric view while
ours is a system-centric view. Recent work in Argiriou and Georgiadis,
2002 uses an almost identical model for QoS as ours, but pursues a very
different line of analysis. Their approach doesn’t seem to permit an in-
vestigation of optimal adaptation policies, which is a major focus of our
work. A different tack on the problem is taken in Rejaie et al., 1999
which proposes a TCP-friendly congestion control scheme for rate adap-
tive video which makes smart use of buffering to absorb short time scale
congestion. This paper also takes a client-centric view. The work in
Gorinsky and Vin, 2001; Gorinsky et al., 2000 investigates many of the
same issues, but with notably different results, particularly with respect
to suggesting the benefit of providing additional encoding levels. The
work in Kar et al., 2000 offers a system level analysis of rate adaptive
streams, but in a static context, i.e., a fixed number of streams. Finally,
B.Vickers et al., 2000 investigates a model where the server dynamically
adjusts the number and rate of each subscription layer in response to
congestion feedback.

The paper is organized as follows. Section 2 specifies the model and
notation. Section 3 defines the three aspects of QoS that we deem most
important for rate adaptive streams. Section 4 analyzes all three as-
pects of QoS for three dynamic adaptation policies. Section 5 analyzes
admission policies for rate adaptive streams that identify subscription
levels for streams at the time of stream initiation, but don’t make use
of dynamic adaptation. Section 6 concludes the paper.

2. Model and Notation
Let stream durations be independent random variables, denoted D,

with a common distribution FD, and a mean E[D] = µ−1. We will use
d to denote a known stream duration, and will write D ∼ exp(µ)) to
denote FD(x) = 1 − exp(−µx). Let new stream requests arrive as a
Poisson process with parameter λ. Let ρ = λ

µ denote the offered load to
the link and let c be the capacity of the bottleneck link.

We abstract stream compression and encoding by considering the re-
sulting time average mean of the compressed stream. That is, if we
consider a VBR multimedia stream of duration d encoded so that the
instantaneous transmissionrate is (b(t), 0 ≤ t ≤ d) and the time average
mean is

s =
1
d

∫ d

0
b(t)dt,
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then we speak of the stream as having a subscription level s. We will
also speak of s as a rate, although this is not to be confused with the
instantaneous rate b(t).

Let s̄ denote the maximally useful subscription level and s denote
the minimally acceptable subscription level. The maximum subscription
level corresponds to the coarsest resolution such that any finer resolution
yields a negligible increase in user perception, while the minimum sub-
scription level corresponds to the coarsest resolution deemed acceptable.
Thus the interval [s, s̄] defines the range of acceptable subscription levels
for the stream. We define the adaptivity β of a stream as the ratio of its
minimum and maximum subscription levels, i.e., β ≡ s/s̄ ∈ (0, 1].

We define the set of supported subscription levels as S ≡ {s̄ = s1 >
... > sK = s} for K ≥ 2. Clients may adapt their subscription level
over the course of stream playback in response to changing network
congestion, where the choice of the instantaneous subscription level is
dictated by the enforced adaptation policy. Note that for the case of
hierarchical encoding a subscription level s corresponds to subscribing
to a set of layers such that the aggregate subscription is s. We abstract
away the layering aspect and just consider the set of feasible subscription
levels.

Let N(t) denote the number of streams that are active at time t.
The maximum number of streams that can be admitted without use of
adaptation is m ≡ b c

s̄c and the maximum number of streams that can
be admitted with adaptation is m̄ ≡ b c

sc. We require N(t) ≤ m̄, i.e.,
we guarantee that all admitted streams receive sufficient bandwidth to
subscribe to the minimum rate or higher.

We will make use of two distinct admission policies. In Section 4
we employ a dynamic adaptation policy and a single class full sharing
admission policy. That is, admission policies have no bearing on the rate
received by the stream, which is handled by the adaptation policy, and
a stream is admitted at time t if N(t) < m̄. Under this assumption the
process {N(t)} has an invariant distribution P (N(t) = n) ≡ pm̄(n), 0 ≤
n ≤ m̄ of an M/GI/m̄/m̄ queue.

In Section 5 we employ admission policies for rate adaptive streams
which are a special form of multi-class stochastic knapsacks with full
sharing, i.e., an arriving stream of a given class is always admitted if
there is sufficient capacity for an additional stream at the subscription
level associated with that class. Thus the stream class determines the
subscription level, which it maintains throughout its duration in the
system, i.e., no dynamic adaptation.

Let D1, ..., DN(t) be the durations of the N(t) streams active at time
t. An adaptation policy π identifies instantaneous subscription levels for
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all active streams subject to the subscription feasibility constraint

Sπ
i (t) ∈ S, i = 1, ..., N(t),

and the link capacity constraint

N(t)∑

i=1

Sπ
i (t) ≤ c,

where Sπ
1 (t), ..., Sπ

N(t)(t) denotes the random variables associated with
the instantaneous stream subscription levels of the active streams at
time t under policy π. We will concentrate on dynamic adaptation poli-
cies that always make maximum use of the available capacity. This
implies that admitting streams when N(t) ≥ m requires that existing
streams adapt their subscription levels to accommodate the newly ad-
mitted stream, i.e., for m ≤ N(t) ≤ m̄ we assume

∑N(t)
i=1 Si(t) = c.

Thus, under dynamic adaptation, clients may experience streams en-
coded with a time-varying subscription level. We denote the client sub-
scription schedule under the dynamic adaptation policy π as the random
process (Sπ(t), 0 ≤ t ≤ D).

3. Quality of Service
We consider three aspects of the overall client perceived performance

when viewing a stream encoded with a time-varying instantaneous sub-
scription level: the time-average mean subscription level, the rate of
adaptation, and the blocking probability.

The normalized time-average mean subscription level is defined as:

Qπ ≡ 1
D

∫ D

0

Sπ(t)
s̄

dt ∈ [β, 1],

where Qπ = β corresponds to a stream that receives rate s throughout
its duration, and Qπ = 1 corresponds to a stream that receives rate s̄
throughout its duration.

The time-average mean subscription level is not a complete character-
ization of client perceived performance. The time-average mean does not
incorporate the number of changes of subscription level nor the size of
those changes. Work by Girod, 1992 demonstrates that frequent changes
in image resolution have deleterious effects on overall client perceived
performance. The metric also is valuable from the standpoint of im-
plementation. Real dynamic adaptation protocols will have an upper
bound on the minimum time between subscription changes. We can
analyze the feasibility of a suggested protocol by analyzing its rate of
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adaptation to see if it falls below the specified bound. To this end we
suggest a second QoS metric, the rate of adaptation, defined as

Rπ ≡ 1
D

∑

t∈Cπ

|Sπ(t+)− Sπ(t−)|,

wher Cπ ≡ {t | 0 < t < D, Sπ(t+) 6= Sπ(t−)} is the set of times at which
the client subscription level changes. Thus the rate of adaptation is the
time-average rate of change of the subscription level.

The third aspect of overall client perceived performance is the proba-
bility that a client is denied service, i.e., blocked. We consider only full
sharing admission policies, i.e., a client is admitted whenever there exist
adequate resources to support the client. In Section 4 we consider single
class admission policies, and so the blocking probability is given by the
Erlang B blocking formula B(ρ, m̄) = pm̄(m̄). In Section 5 we consider
multi-class admission policies, where the blocking probability depends
on the class to which the stream is assigned. In that case we will use
as our metric the overall blocking probability, i.e., if streams of class k
arrive at rate λk and have a blocking probability Bk then the overall
blocking probability is

∑K
k=1

λk
λ Bk.

Previous work Weber and de Veciana, 2002 identified an appropriate
joint load and capacity scaling regime for rate adaptive streams, and
showed that non-trivial asymptotic expressions for the mean subscription
level were obtainable. We define the rate adaptive scaling regime as
choosing c(λ) ≡ αs̄ρ, for α > 0 the rate adaptive scaling parameter, and
investigating QoS as λ →∞ and c = c(λ). We define

qα,π ≡ lim
λ→∞,c=c(λ)

E[Qπ], rα,π ≡ lim
λ→∞,c=c(λ)

E[Rπ],

as the asymptotic mean subscription level and rate of adaptation under
the policy π with a rate adaptive scaling parameter α. Note that α =
c
ρs̄ represents the capacity divided by the desired overall workload. In
Weber and de Veciana, 2002 we identify α ≤ β as an overloaded regime,
characterized by a high blocking probability of 1−α

β and minimum qα,π =
β. We also identify α ≥ 1 as an under-loaded regime, characterized
by zero blocking and maximum qα,π = 1. The regime β < α < 1
corresponds to the critically loaded regime with zero blocking, but a
policy dependent asymptotic value for q.

Finally, a note about utility functions. Our previous work Weber and
de Veciana, 2002 uses a utility function u(s) giving the utility of a given
subscription level,and the definition of Q is correspondingly changed to
the time average mean utility. Recent work by Kimura Kimura, 1999 on
MPEG-2 encoding demonstrates that our assumption of an (implicitly
defined) linear utility function may be reasonable.
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4. Dynamic Adaptation Policies
Throughout this section we assume a single class admission policy

with full sharing as described in Section 2. Thus the blocking probability
B(ρ, m̄) is independent of the adaptation policy. We investigate three
dynamic adaptation policies: fair share (π = fs), two rate randomized
adaptation (π = ra), and optimal adaptation (π = π∗), defined as the
policy which maximizes the expected mean subscription level E[Q]. We
identify the expected mean subscription level E[Qπ], the expected rate
of adaptation E[Rπ] for all three policies, and, when possible, identify
their asymptotic analogues qα,π and rα,π.

Fair Share Dynamic Adaptation
Under fair share adaptation, with n active streams in the system, each

stream chooses subscription level

sfs(n) ≡
{

s̄, 0 < n ≤ m
c
n , m ≤ n ≤ m̄

.

That is, we assume S = {s, c
m̄−1 , ..., c

m+1 , s̄}, so that the number of
required subscription levels grows linearly in c. The following lemma
gives finite capacity and asymptotic expressions for the expected mean
subscription level and expected rate of adaptation under the fair share
adaptation policy.

Lemma 1 Under the fair share (π = fs) adaptation policy we have that

E[Qfs] =
m̄−1∑

n=0

pm̄−1(n)
sfs(n + 1)

s̄
, (1)

qα,fs =





β, α ≤ β
α, β < α < 1
1, α ≥ 1

, (2)

E[Rfs] = 2µ
m̄−1∑
n=m

pm̄−1(n)sfs(n + 1), (3)

rα,fs =





2µs, α ≤ β
2µs̄α, β < α < 1

0, α ≥ 1
. (4)

Thus both qα,fs, rα,fs are linear in α in the critical regime β < α < 1.
Figures 2 and 3 exhibit the above equations along with simulation results
for λ = 40 and 320 versus α. The plots illustrate a good match between
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Figure 2. Simulation and computation results for the fair share dynamic adaptation
policy: E[Qfs] and qα,fs vs. α for λ = 40, 320, µ−1 = 1, s = 1, s̄ = 2, and c(λ) = αs̄ρ.
The overloaded regime is α ≤ β = 0.5, the critically loaded regime is 0.5 < α < 1,
and the under-loaded regime is α ≥ 1.

computational and simulation results, as well as the convergence to the
asymptotic values.

Although rα,fs is finite, the asymptotic expected number of adap-
tations is infinite. Straightforward manipulations show that the ex-
pected number of subscription level changes under the fair share policy
is 2λP(m − 1 ≤ N < m̄ − 1) which goes to infinity as λ gets large.
This result is easily understood: in a loss network the number of active
streams changes at rate 2λ(1−B(ρ, m̄)). The difference here is that no
change in rate is required by a change in the number of streams when
n < m.

Two Rate Randomized Dynamic Adaptation
To realize fair share adaptation content servers must provide a large

set of subscription levels. The idea behind two rate randomized dynamic
adaptation is that instead of adapting all streams by a small amount we
can do equally wellon average by adapting a small set of streams by a
larger amount. Under two rate randomized dynamic adaptation, when
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Figure 3. Simulation and computation results for the fair share dynamic adaptation
policy: E[Rfs] and rα,fs vs. α for varying λ. Same simulation parameters as Figure
2.

there are n active streams, we allocate a rate s̄ to n̄(n) of the streams,
chosen at random, and a rate s to the remaining n(n) streams. The
functions (n(n), n̄(n)) are defined as

(n(n), n̄(n)) ≡
{

(0, n), 0 ≤ n ≤ m(⌈
ns̄−c
s̄−s

⌉
,
⌊

c−ns
s̄−s

⌋)
, m < n ≤ m̄

.

The quantity n̄(n) is the maximum number of streams that can be sup-
ported at subscription level s̄ while leaving sufficient capacity for the
remaining n(n) streams to maintain a subscription level s. Note that
S = {s̄, s}, which is significantly smaller than the set of required sup-
ported subscription levels under fair share. The following lemma gives
finite capacity and asymptotic expressions for the expected mean sub-
scription level and expected rate of adaptation under the two rate ran-
domized adaptation policy.
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Lemma 2 Under the two rate randomized adaptation policy (π = ra)
we have that

E[Qra] =
m̄−1∑

n=0

pm̄−1(n)

[
n(n + 1)

n + 1
β +

n̄(n + 1)
n + 1

]
, (5)

qα,ra = qα,fs, (6)

E[Rra] = 2(s̄− s)µ
m̄−1∑
n=m

pm̄−1(n)
n̄(n)n(n + 1) + n̄(n + 1)n(n)

n + 1
, (7)

rα,ra =




∞, α ≤ β
∞, β < α < 1
0, α ≥ 1

. (8)

Thus two rate randomized adaptation achieves an asymptotic mean sub-
scription level equal to that under the fair share policy, but suffers from
an infinite asymptotic infinite rate of adaptation for α < 1.

Figures 4 and 5 exhibit the above equations along with simulation
results for λ = 40 and 320 versus α. The plots illustrate a good match
between computational and simulation results, as well as the convergence
to the asymptotic values.

It can be shown that E[Qfs] − E[Qra] ≤ s̄−s
m , so that for large ca-

pacity links the expressions are nearly equal, and the difference goes to
zero as the link capacity increases, i.e., qα,ra = qα,fs Weber and de Ve-
ciana, 2002. The rate of adaptation, however, is drastically different
for randomized adaptation than for fair share. The problem is that our
formulation of the two rate randomized policy randomly selects a new
set of the appropriate size to be adapted each time N(t) changes and
N(t) ≥ m. We have also investigated a randomized adaptation policy
that keeps state information on stream subscription levels, and changes
rate for as few streams as required by changes in n̄ and n. Under this
policy we find equivalent expressions for E[Qra] but the values for E[Rra]
are on par with E[Rfs]. The drawback to the fair share policy is that
it requires a large number of supported subscription levels and requires
a large number of adaptations, although the overall rate of adaptation
is reasonably small. The two rate randomized adaptation policy either
suffers from unacceptably high rate of adaptation or requires link state
be kept to keep the rate of adaptation reasonably low.

The drawbacks to the fair share and two rate randomized adapta-
tion policies are serious: the unacceptably high number of adaptations
required by fair share and the unacceptably high rate of adaptation re-
quired by randomized adaptation render these policies infeasible for large



12

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.2 0.4 0.6 0.8 1 1.2 1.4

E
[Q

]

alpha

QoS vs. alpha, Randomize, Exponential
mu = 1.0, s_max = 2, s_min = 1

Comp, lambda = 40.0
Sim, lambda = 40.0

Comp, lambda = 320.0
Sim, lambda = 320.0
Asym, lambda = infty

Figure 4. Simulation and Computation of E[Qra], qα,ra,E[Rra] vs. α for varying λ.
Same simulation parameters as Figure 2.

capacity links. These drawbacks motivate investigation of the optimal
adaptation policy, which we explore next.

Optimal Dynamic Adaptation
We use the term optimal dynamic adaptation policy to denote the

policy that maximizes E[Qπ] over all feasible policies. The following
theorem, from Weber and de Veciana, 2002, identifies this policy as
granting preference to short duration streams.

Theorem 1 Order the streams active at time t by increasing duration so
that D1 < ... < DN(t). The dynamic adaptation policy π∗ that maximizes
E[Qπ] is

Sπ∗
i (t) =

{
s̄, i = 1, ..., n̄(N(t))
s, i = n̄(N(t)) + 1, ..., N(t) .

The intuition behind this result is simple: we maximize the long term
client average mean subscription level by giving priority to short duration
streams since those streams consume fewer resources.

The optimal rate of an admitted stream depends on the number of
other streams in the system as well as on their durations. Let D denote
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Figure 5. Simulation and Computation of E[Qra], qα,ra,E[Rra] vs. α for varying λ.
Same simulation parameters as Figure 2.

the duration of an arbitrary active stream, let N denote the number of
other active streams, and let D1, ..., DN be their durations. Define

YN,D ≡
N∑

i=1

1(Di ≤ D)

as the number of streams with shorter durations than the considered
stream of duration D. The distribution of stream durations when viewed
at an arbitrarily chosen time is not FD(d) because we are more likely
to see longer duration streams than short duration streams at an arbi-
trary time. The distribution is FU (u) ≡ µ

∫ u
0 zdFD(z) for the M/GI/∞

queue Walrand, 1988, which should approximate the distribution for the
M/GI/m̄/m̄ queue when the blocking probability is low. In the sequel
we consider approximations that are valid whenever B(ρ, m̄) is accept-
ably small. In this regime, YN,D ∼ Bin(N, FU (D)) since D1, ..., DN are
i.i.d. with distribution FU (D). The following theorem gives approxi-
mate expressions for the expected mean subscription level and expected
rate of adaptation under the optimal adaptation policy.
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Theorem 2 Under the optimal adaptation policy and in a low blocking
regime

E[Qπ∗ ] ≈ 1− (1− β)
m̄−1∑

n=1

pm̄−1(n)
∫ ∞

0
P(Yn,d ≥ n̄(n + 1))dFD(d),(9)

E[Rπ∗ ] ≈ 2λ(s̄− s)
m̄−2∑

n=m−1

(
pm̄−1(n) ×

∫ ∞

0
P
(
Yn,d < n̄(n + 1), Yn+1,d ≥ n̄(n + 2)

)
dFD(d)

)
. (10)

Under the optimal adaptation policy

qα,π∗ =





β, α ≤ β

1− (1− β)F̄D(F−1
U (α−β

1−β )), β < α < 1
1, α ≥ 1

. (11)

A simple expression for rα,π∗ , β < α < 1 appears difficult to obtain,
although it may be shown that rα,π∗ = ∞ for α ≤ β, and rα,π∗ = 0 for
α ≥ 1.

Figures 6 and 7 exhibit the above equations along with simulation re-
sults for λ = 40 and 320 versus α for the case of exponentially distributed
stream durations. The plots show a good match between computational
and simulation results for the finite capacity case when the low blocking
assumption is valid α ≥ 0.5, as well as the convergence to the asymptotic
values. The region α ≤ β illustrates the divergence between computed
and simulated results due to the low blocking assumption being violated
in this regime. Comparing the plot of E[Qπ∗ ] with E[Qfs] in Figure 2 and
E[Qra] in Figure 4, we see an increase in mean subscription level under
the optimal policy of as much as 20% in the critical regime. The plot of
E[Rπ∗ ] shows that the rate of adaptation decreases in α. The intuition,
made clear in the following discussion on client perceived performance, is
that the optimal adaptation policy effectively creates a duration thresh-
old and streams near that threshold experience high adaptation. For
α near β that threshold is very short, so that short streams experience
frequent adaptation, yielding a very high rate of adaptation, while for α
near 1 the threshold is very long, so that only the very longest streams
experience adaptation, which, when divided by their long stream dura-
tion, gives them a small rate of adaptation.

Client perceived performance measures may be obtained by consider-
ing the QoS metrics conditioned on a particular client stream duration
d. The following lemma gives expressions for these quantities for both
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Figure 6. Simulation and Computation of E[Qπ∗ ] and qα,π∗ vs. α for varying λ,
β = 0.5, D ∼ exp(1).

finite capacity and asymptotic cases. We use the following notation

qα,π∗
d ≡ lim

λ→∞,c=c(λ)
E[Qπ∗ | D = d], rα,π∗

d ≡ lim
λ→∞,c=c(λ)

E[Rπ∗ | D = d]

to denote the asymptotic mean subscription level and rate of adaptation
for a stream with duration d.

Lemma 3 Under the optimal adaptation policy and in a low blocking
regime

E[Qπ∗ | D = d] ≈ 1− (1− β)
m̄−1∑

n=1

pm̄−1(n)P(Yn,d ≥ n̄(n + 1)),(12)

E[Rπ∗ | D = d] ≈ 2λ(s̄− s)
m̄−2∑

n=m−1

(
pm̄−1(n) ×

P
(
Yn,d < n̄(n + 1), Yn+1,d ≥ n̄(n + 2)

))
. (13)
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Figure 7. Simulation and Computation of E[Rπ∗ ], vs. α for varying λ, β = 0.5,
D ∼ exp(1).

Under the optimal adaptation policy

qα,π∗
d =





β, α ≤ β,

β, β < α < 1, d ≥ F−1
U (α−β

1−β )
1, β < α < 1, d < F−1

U (α−β
1−β )

1, α ≥ 1

. (14)

A simple expression for rα,π∗
d appears difficult to obtain, although rα,π∗

d =
0 for |d− F−1

U (α−β
1−β )| > ε, for some unspecified ε > 0.

Figures 8 and 9 exhibit the above equations along with simulation re-
sults for λ = 320 versus d for α = 0.75 and β = 0.5. The plots illustrate
a good match between computational and simulation results, as well as
the convergence to the asymptotic values. Several points are worth men-
tioning. First, it is easily seen from these plots that the optimal dynamic
adaptation policy grants a constant subscription level of s̄ for streams
with durations significantly shorter than the threshold F−1

U (α−β
1−β ), and a

constant subscription level of s for streams with durations significantly
longer than the threshold. Streams with durations in the vicinity of the
threshold experience a mean subscription level in (β, 1), and a relatively
high rate of adaptation.
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Figure 8. Simulation and Computation of E[Qπ∗ | D = d] and qα,π∗
d vs. d for

α = 0.75 and λ = 320, 640, β = 0.5, D ∼ exp(1).

The main idea that is gleaned from these figures is that the optimal
dynamic adaptation policy only utilizes dynamic adaptation for a small
number of streams with duration near the threshold. These streams are
the ones that are toggled between s̄ and s as streams depart and arrive
respectively. These observations suggest that near optimal mean sub-
scription levels may be obtainable by an admission policy where streams
are granted a fixed subscription level depending on their duration at the
time of stream initiation. A fixed subscription level means E[Rπ] = 0
but that the blocking probability B would be higher because streams no
longer can adapt their subscription levels to accommodate newly admit-
ted streams. We investigate admission policies for rate adaptive streams
in the next section.

5. Admission Policies For Rate Adaptive
Streams

We define an admission policy for rate adaptive streams as an ad-
mission policy that assigns a subscription level to a stream which that
stream maintains throughout its lifetime in the system, i.e., the stream
is not dynamically adapted. The previous section demonstrates that
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Figure 9. Simulation and Computation of E[Rπ∗ | D = d] vs. d for α = 0.75 and
λ = 320, 640, β = 0.5, D ∼ exp(1).

on large capacity links the optimal dynamic adaptation policy effec-
tively creates a duration threshold and gives short duration streams the
maximum subscription level and long duration streams the minimum
subscription level. This suggests designing an admission policy for rate
adaptive streams whereby streams are admitted at a duration depen-
dent subscription level which they maintain throughout their lifetime.
In this section we will show that such an admission policy can obtain an
expected subscription level that is asymptotically equal to that under
the optimal dynamic adaptation policy, and has the added benefit of
not requiring dynamic adaptation. We make a slight abuse of notation
and say π = aa to refer to an admission policy for rate adaptive streams
where dynamic adaptation is not employed.

Recall that S ≡ {s̄ = s1, ..., sK = s} is the set of supported subscrip-
tion levels, and that without loss of generality we assume sk > sk+1.
Let D ≡ {d1, ..., dK−1} denote a set of duration thresholds where dk ≥
dk−1 ≥ 0 for k = 1, ..., K−1. A stream of duration d is assigned a static
subscription level given by

Saa(d) = sk∗ , k∗ = max{0 < k ≤ K | dk−1 ≤ d < dk}.
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We assume d0 = 0 and dK = ∞ in the above definition. The stream is
admitted at time t provided

K∑

k=1

skNk(t) + Saa(d) ≤ c

where we redefine N(t) ≡ (N1(t), ..., NK(t)) as the number of active
streams at each subscription level at time t.

This system is a K class stochastic knapsack with a full sharing ad-
mission policy Ross, 1995. The parameters of the stochastic knapsack
are the capacity c, the class size sk, and the class load ρk = λk

µk
where λk

is the class arrival rate and µ−1
k is the mean class duration. We calculate

the arrival rate, mean class duration, and class load as

λk = λ(FD(dk)− FD(dk−1)),

µ−1
k = E[D | dk−1 ≤ d < dk] = µ−1 FU (dk)− FU (dk−1)

FD(dk)− FD(dk−1)
,

ρk = ρ(FU (dk)− FU (dk−1)),

for k = 1, ..., K. Recall FU (u) ≡ µu
∫ u
0 zfD(z)dz is the distribution of

stream durations when the system is viewed at an arbitrary time.
The blocking probabilities are class dependent and we write Bk(D) ≡

P(
∑K

l=1 slNl(t)+ sk > c) for k = 1, ..., K. We define the overall blocking
probability as B(D) ≡ ∑K

k=1
λk
λ Bk(D). We can bound this as B(ρ, m̄) ≤

B(D) ≤ B(ρ,m) since B(ρ, m̄) corresponds to the single class system
where all streams are admitted at rate s and B(ρ, m) corresponds to the
single class system where all streams are admitted at rate s̄.

The expected subscription level under the admission policy for rate
adaptive streams is defined as

E[Qaa] ≡
K∑

k=1

λk(1−Bk(D))sk

λ(1−B(D))s̄
,

which can be thought of as a normalized revenue function, i.e., an admit-
ted stream of class k earns revenue sk, and so E[Qaa] is the normalized
rate at which revenue is earned. Similarly, we define the asymptotic
expected subscription level under the admission policy for rate adaptive
streams as

qα,aa ≡ lim
λ→∞,c=c(λ)

E[Qaa].

The following theorem identifies the asymptotically optimal admission
policy for rate adaptive streams that maximizes the asymptotic expected
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subscription level subject to maintaining an asymptotic blocking prob-
ability of zero.

Theorem 3 The two class admission policy for rate adaptive streams
with duration threshold

d∗ =





0, α ≤ β

F−1
U (α−β

1−β ), β < α < 1
∞, α > 1

(15)

maximizes the asymptotic expected subscription level qα,aa over all K
class stochastic knapsacks that achieve an asymptotic blocking probability
of 0 for α > β. Moreover, this admission policy π = aa∗ achieves an
asymptotic expected subscription level equal to that under the optimal
dynamic adaptation policy, i.e., qα,aa∗ = qα,π∗.

Theorem 3 gives the asymptotically optimal admission policy for rate
adaptive streams and, more importantly, tells us that there is no loss
in asymptotic mean subscription level incurred by not using dynamic
adaptation. Thus admission policies for rate adaptive streams obtain
the equivalent mean subscription level as dynamic adaptation, have the
benefit of a rate of adaptation of 0, and maintain the low blocking char-
acteristic of dynamic adaptation. The cost paid is that the blocking
probability using dynamic adaptation goes to 0 exponentially fast for
α > β while the blocking probability using the optimal admission pol-
icy for rate adaptive streams goes to 0 like O( 1√

c
) for β < α ≤ 1, and

exponentially for α > 1.
Figures 10 and 11 provide a comparison between the optimal dynamic

adaptation policy and the optimal admission policy for rate adaptive
streams. Figure 10 provides computational and simulation results for
the expected subscription level under the two class admission policy
which maximizes the expected subscription level subject to an overall
blocking probability of B∗ = 1% for λ = 40, 320. That is, the duration
d∗ solves

max
d
{E[Qaa] | B(d) ≤ B∗}

making the slight abuse of notation by writing d for D = {d}. A plot of
qα,aa∗ = qα,π∗ is also provided. The plot illustrates the convergence to
the asymptotic expected subscription level.

Figure 11 gives the overall blocking probability for a two class admis-
sion policy where the duration threshold is chosen so that the expected
subscription level equals that under the optimal dynamic adaptation-
policy, i.e., d∗ is chosen as the unique d such that E[Qaa] = E[Qπ∗ ]
for λ = 40, 320. Plots of the computed and simulated overall blocking
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Figure 10. Simulation and computation of E[Qaa∗ ] and qα,aa∗ vs. α for B∗ = 1%,
λ = 40, 320, β = 0.5, and D ∼ exp(1). Not all lines are visible because the computed
and simulation values being nearly equal.

probability are given, along with a plot of the asymptotic blocking prob-
ability, i.e., 1− α

β for α ≤ β and 0 for α > β. The panel illustrates the
convergence to the asymptotic blocking probability.

Finally, we offer a brief comment on implementation. The optimal
adaptive admission policy requires that the bottleneck link identify its
duration threshold (15), which depends on FD, ρ, c, s, s̄. The distribution
FD could be analyzed and hard-coded, or could be estimated empirically
by keeping track of stream durations. The load ρ could be estimated
empirically by monitoring arriving service request times and service du-
rations. Indeed, such a measurement would make the model more robust
to the observed non-stationarities present in Internet traffic. The param-
eters s and s̄ could be estimated by monitoring stream rate associated
with long duration and short duration streams. The algorithm could eas-
ily be made to be distributed—stream service requests would traverse
the route from client to server and at each node pick up the duration
threshold for that link along with an admission decision. Upon return-
ing to the client, provided all link admission decisions are positive, the
client subscribes to the stream content provider at the maximum rate if
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Figure 11. Simulation and computation of B(d∗) (see text) and asymptotic blocking
probability vs α for λ = 40, 320, β = 0.5, and D ∼ exp(1).

the stream duration is smaller than the maximum duration threshold,
and subscribes at the minimum rate otherwise.

6. Conclusion
The rationale behind dynamic adaptation of rate adaptive streams is

that by dynamically adjusting the subscription level we obtain the sys-
tem benefit of a low blocking probability and the client benefit of making
full use of all available capacity. The price paid for these gains is that
clients incur a lowered perceived QoS both in terms of the mean sub-
scription level and the rate of adaptation compared with non-adaptive
streams admitted at their maximum subscription level s̄. Our investiga-
tion of adaptive admission shows that, for large capacity links, a simple
duration threshold two class admission policy obtains the asymptotic
optimal mean subscription level, asymptotic zero blocking probability,
and zero rate of adaptation. Thus, for large capacity links, the protocol,
resource, and implementation overhead required by dynamic adaptation
is not justifiable. Moreover, optimal QoS is obtainable using only two
subscription levels—this has the significant implication that multimedia
content providers gain little benefit from providing more than two en-
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codings. Of course, this is assuming clients aren’t access line limited, in
which case additional encodings will be of use to such clients. Future
work in this area will analyze the case of heterogeneous minimum and
maximum subscription levels.

Appendix
Proof of Lemma 1 The proof of (1) and (2) is found in Weber and de Veciana,

2002.
Proof of (3). Conditioned on a stream being admitted, that stream sees the system

with capacity m̄− 1, i.e., the process N(t) denoting the number of other streams has
an invariant distribution pm̄−1(n), 0 ≤ n ≤ m̄ − 1, where n is the number of other
streams in the system. By PASTA the conditioned stream sees the other streams in
steady state. In steady state, when N(t) = n, the number of other streams changes
due to arrivals and departures at rate λ + nµ. The definition of the fair share rate
implies that not all changes in the number of streams will change the fair share rate.
When n ∈ {0, ..., m−2} neither an arrival or departure causes a change in rate. When
n ∈ {m − 1, ..., m̄ − 2} an arrival causes a change in rate from c

n+1
to c

n+2
. When

n ∈ {m, ..., m̄ − 1} a departure causes a change in rate from c
n+1

to c
n
. Admissions

occur at rate λ for n < m̄ − 1 and departures occur at rate nµ for n > 0. Putting
these observations together we obtain

E[Rfs] =

m̄−2X
n=m−1

λpm̄−1(n)(
c

n + 1
− c

n + 2
) +

m̄−1X
n=m

nµpm̄−1(n)(
c

n
− c

n + 1
).

Using detailed balance equations for πm̄−1(n) and relabeling indices yields the result.
Proof of (4). We may write (3) as

E[Rfs] = 2µs̄αE
h 1

N/ρ

���m < N ≤ m̄
i
P
�
m < N ≤ m̄

�
.

Define the random process {Nα,ρ(t)} for the number of streams on the link at time t
when the load is ρ and the capacity is c(λ) = αs̄ρ. The distribution of Nα,ρ(t) is that
of an M/GI/m̄/m̄ queue with load ρ and capacity m̄ = α

β
ρ. By the Law of Large

Numbers

lim
λ→∞

E[
Nα,ρ

ρ
] =

8<: α
β
, α ≤ β

1, β < α < 1
1, α > 1

and

lim
λ→∞

P
�
α <

Nα,ρ

ρ
≤ α

β

�
=

8<: 1, α ≤ β
1, β < α < 1
0, α ≥ 1

.

The asymptotic rate of adaptation is

rα,fs = lim
λ→∞,c=c(λ)

E[Rfs]

= lim
λ→∞

2µs̄αE
h 1

Nα,ρ/ρ

���α <
Nα,ρ

ρ
≤ α

β

i
P
�
α <

Nα,ρ

ρ
≤ α

β

�
.

Thus when α ≤ β we have rα,fs = (2µs̄α)( β
α
)(1) = 2µs̄β = 2µs. When β < α < 1 we

have rα,fs = (2µs̄α)(1)(1) = 2µs̄α. Finally, when α ≥ 1 we have rα,fs(2µs̄α)(1)(0) =
0.
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�
Proof of Lemma 2
The proof of (5) and (6) is found in Weber and de Veciana, 2002.
Proof of (7). The preliminary remarks in the proof of Lemma 1 apply here as well.
All changes in rate are of size s̄ − s, but the number of streams that change rate

depends on the number of streams and the new random selection of streams to be
adapted. Let t denote a jump time, i.e., a stream arrival or departure, S(t) the
rate allocated to the stream we’ve conditioned on being present, and S(t−) the rate
allocated to that stream immediately prior to the jump time. The probability that
the conditioned stream changes rate is

P(Sra(t) 6= Sra(t−)) = P(Sra(t) = s̄)P(Sra(t−) = s) + P(Sra(t) = s)P(Sra(t−) = s̄)

When n ∈ {0, ..., m − 2} no streams change rate for either an arrival or departure.
When n ∈ {m−1, ..., m̄−2} an arrival causes a stream to change rate with probability

g(n + 1) ≡ n̄(n + 2)n(n + 1) + n(n + 2)n̄(n + 1)

(n + 1)(n + 2)
.

When n ∈ {m, ..., m̄− 1} a departure causes a stream to change rate with probability
g(n). This gives

E[Rra] =

m̄−2X
n=m=1

λpm̄−1(n)g(n + 1) +

m̄−1X
n=m

nµpm̄−1(n)g(n).

Detailed balance equations yield the result.
Proof of (8). We may rewrite (7) as

E[Rra] = 2(s̄− s)µE
h n̄(N)n(N + 1) + n̄(N + 1)n(N)

N + 1

���m ≤ N ≤ m̄− 1
i
×

P
�
m ≤ N ≤ m̄− 1

�
The same developments found in the proof of Lemma 1 regarding P(m ≤ N ≤ m̄− 1)
apply. Under the rate adaptive scaling this becomes

rα,ra = lim
λ→∞,c=c(λ)

E[Rra]

= lim
λ→∞

4(s̄− s)E
h n̄(Nα,ρ)n(Nα,ρ)

Nα,ρ

���α <
Nα,ρ

ρ
≤ α

β

i
P
�
α < Nα,ρ ≤ α

β

�
.

For α ≤ 1 P(α < Nα,ρ ≤ α
β
) = 1 and so rα,ra = ∞ since

lim
λ→∞

E
h n̄(Nα,ρ)n(Nα,ρ)

Nα,ρ

i
= ∞.

For α > 1, however,

P
�
α < Nα,ρ ≤ α

β

�
goes to 0 exponentially in λ while

E
h n̄(Nα,ρ)n(Nα,ρ)

Nα,ρ

���α <
Nα,ρ

ρ
≤ α

β

i
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grows linearly in λ, forcing rα,ra to 0.
�
Proof of Theorem 1 See Weber and de Veciana, 2002.
Proof of Theorem 2
Proof of (9). Consider an arbitrary time t.

E[Qπ∗ ] = E[
Sπ∗(t)

s̄
]

= 1P(YN,D < n̄(N + 1)) + βP(YN,D ≥ n̄(N + 1))

= 1− (1− β)P(YN,D ≥ n̄(N + 1)).

The first equality follows by ergodicity. Simple conditioning yields the equation.
Proof of (10). Consider again an arbitrary time t. Similar to the proofs of Lemmas

1 and 2, we break down the analysis for different values of N(t). For n ∈ {0, ..., m−2}
neither an arrival nor departure causes a change in rate. For n ∈ {m−1, ..., m̄−2}, an
arrival causes a change in rate from s̄ to s if Yn,D < n̄(n+1) and Yn+1,D ≥ n̄(n+2). For
n ∈ {m, ..., m̄− 1}, a departure causes a change in rate from s to s̄ if Yn,D ≥ n̄(n+1)
and Yn−1,D < n̄(n). Putting these observations together we obtain

E[Rπ∗ ] = (s̄− s) ×� m̄−2X
n=m−1

λpm̄−1(n)

Z ∞

0

P(Yn,d < n̄(n + 1), Yn+1,d ≥ n̄(n + 2))dFD(d)

+

m̄−1X
n=m

nµpm̄−1(n)

Z ∞

0

P(Yn,d ≥ n̄(n + 1), Yn−1,d < n̄(n))dFD(d)
�
.

Detailed balance equations yield the result.
Proof of (11) may be found in Weber and de Veciana, 2002.
�
Proof of Lemma 3 The proofs of (12), (13), and (14) are exactly the same as

the proofs of (9), (10) and (11) respectively, but with D = d.
�
Proof of Theorem 3 The critical insight behind the proof is that the optimal

asymptotic expected subscription level subject to the asymptotic zero blocking con-
straint is met when asymptotic load equals asymptotic capacity, i.e.,

lim
λ→∞,c=c(λ)

PK
k=1 ρksk

c
=

PK
k=1(FU (dk)− FU (dk−1))sk

αs̄
= 1.

It is shown in Ross, 1995 that blocking is zero for this case, although the convergence
is O( 1√

c
). We may then write the optimization problem as

max
D

n KX
k=1

(FD(dk)− FD(dk−1))sk

��� KX
k=1

(FU (dk)− FU (dk−1))sk = αs̄
o

The Lagrangian is

L(D, z) =

KX
k=1

(FD(dk)− FD(dk−1))sk − z
� KX

k=1

(FU (dk)− FU (dk−1))sk − αs̄
�
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Taking derivatives yields

∂L(D, z)

∂dk
= fD(dk)sk − fD(dk)sk+1 − z(fU (dk)sk − fU (dk)sk+1).

Use of the fact that fU (d) = µdfD(d) allows

∂L(D, z)

∂dk
= (sk − sk+1)fD(dk)(1− zµdk)

Optimality requires ∂L(D,z)
∂dk

= 0 for k = 1, ..., K − 1; inspection shows this is only

true for dk = 1
zµ

,i.e., dk = d∗ ∀k. This implies the optimal threshold policy uses only
two classes, i.e., s̄ and s, and so the inclusion of additional subscription levels, i.e.,
K > 2, is unnecessary.

For a two class system the blocking constraint simplifies to

FU (d)s̄ + F̄U (d)s = αs̄.

Solving this for d yields (for β < α ≤ 1)

d∗ = F−1
U (

α− β

1− β
).

When α ≤ β asymptotic zero blocking is impossible since the system is overloaded.
We minimize blocking, however, by admitting all streams at s, i.e., d∗ = 0. When
α > 1 we obtain asymptotic zero blocking by admitting all streams at s̄, i.e., d∗ = ∞.
Combining these notions gives the result.

The asymptotic expected subscription level under the adaptive admission policy
with duration threshold d∗ is

qα,aa∗ = FD(d∗) + βF̄D(d∗).

Rearranging gives the result.
�
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